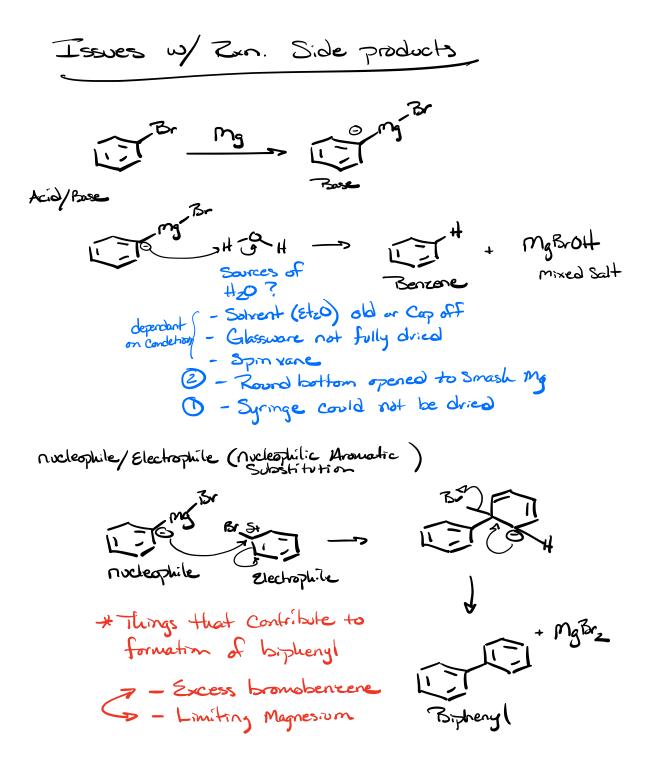
How many moles?
1.05g
$$C_6H_5B_7$$

 $6 \times 12.01 + 5 \times 1.00794 + 79.904$
 $= 157.01 g/mdle$
 $1.05g \times \frac{1mole}{157.01g} \times \frac{1000 mmol}{1mole} = 6.687 mmol$


most small scale clientestry is 0,5 mmol - 10 mmol often 1~2 mmol scale.

$$C_{15}H_{10}O = 13 \times 12.01 + 10 \times 1.00794 + 15.9994 = 182.23 g /mdle$$

$$1.09 g \times \frac{1 mdle}{182.23 g} \times \frac{1000 mole}{1 mole} = 5.981 mmol$$

$$Him. Him.$$

% yield =
$$\frac{\text{actual}}{\text{Theoretical}} \times 100$$

= $\frac{0.833}{9}$
Limiting 5.981 modex $\frac{1 \text{ mol}}{1000 \text{ model}} \times \frac{260.32}{1 \text{ mol}} \times 100$
= 53.5% isolated yield

